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Abstract —A method based on speetrat-domain anatysis is derived to

compute effectively and automatically the effective relative permittivity of

an open microstrip line. Simple but accurate closed-form expressions are

used as the basis functions of the longitudinal and transverse current

distributions. The numerical resufts are shown in tables and figures for

various cases and compared WMI other available results. The results

presented here are seen as having a high degree of aeeuracy and nmy be

used as reference standards,

I. INTRODUCTION

A’ CCURATE CALCULATION of the dispersion

characteristics of open rnicrostrip lines can be ear-

ned out by hybrid-mode analysis. This dispersion analysis

has been studied by a number of researchers and by

various methods (see [1]–[7] and references therein). These

methods are intrinsically rigorous, but need long computa-

tion times since the longitudinal and transverse current

distributions must be expressed using a large number of

basis functions to calculate the dispersion characteristics

numerically with a high degree of accuracy. The results in

many papers were calculated with a small number of basis

functions to save computation time, and the current distri-

butions were not expressed accurately. This is the major

cause for the significant discrepancies between many com-

puted results, as shown by Kuester and Chang [5, fig. 2]

and by Fig. 3 in the present paper.

An attempt is required at present to confirm which

numerical results are more “exact” and particularly to

show results with a high degree of accuracy for use as a

“standard.”

In the spectral-domain analysis with powerful features

proposed by Itoh and Mittra [4], the choice of the basis

functions is important for numerical efficiency. One of the

present authors proposed simple but accurate closed-form

expressions for the normalized longitudinal and transverse

current distributions on microstrip [13].1

In this paper, using these expressions the frequency-

dependent characteristics for the effective relative permit-

tivities of microstrip lines are calculated accurately by

spectral-domain analysis [4]. In the numerical calculation,
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1Main corrections in [13]: longitudinal+ transverse in figs. 8–10;

ix(xm)u(f)/(iz(0) O)(m) + jix(xm)u(f)/(iz (0)~h) in fig. 11.
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Fig. 1, Microstrip configuration.

a‘ method is derived to determine effectively Ad automati-

cally the effective relative permittivity C;f (f ) using only

one trial value, and the computation time is greatly re-

duced. The numerical results are shown in tables and

figures for the cases of various shape ratios and various

relative permittivities of the substrate.

II. CALCULATING METHOD

Fig. 1 shows the open rnicrostrip line structure, assumed

to be uniform and infinite in both x- and z-directions. The

infinitely thin strip and the ground plane are perfect

conductors. It is also assumed that the substrate material is

lossless and its relative permittivity and permeability are

C* and P*( =.1), respectively. It is advantageous to carry

out the investigation with functions that are Fourier trans-

formed with respect to the x-axis. For convenience, the

Fourier transform of a variable with respect to x is de-

noted by a tilde ( - ) above it, such as

f(a) = Jmf(x)e+’axdx.

—w

(1)

This definition is the same as that given by Itoh and

Mittra [4]. Propagation in the z-direction according to

exp ( – j~z) and time dependence of exp ( jd) are as-

sumed, where ~ is the unknown propagation constant and

~ is the operating angular frequency.

The unknown curr~nt components on the strip are de-

noted by ~’(a) and 1=(a), respectively. According to Itoh
and Mittra [4], we can solve the boundary value problem

in the spectral domain for the following boundary condi-

tions at the interface between the substrate (region 1) and

the air (region 2):

Exl(a, h) = .&(% h) (2a)

Ezl(a, h) = E=2(a, h) (2b)

Ezl(a, h)– f7.z*(a, h) = –fx(~) (3a)

Exl(a, h)– fix2(a, h) = ~(a). (3b)
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However misprints exist in the equations given in [4], and

the following c~rrections should be made: ~.a) in (4a)

and (4b) - – JX(a), imd det in the equations for Gll and
Gzz * – det.

After these ~correction~ expanding the unknown current

components lX(a) and. lZ( a) in terms of the known basis

functions ~XH(a) and lz.(a) as

M

i“(a)= z cnixn(~) (4a)
~=1

N

~=1

and using the method given in [4], we can obtain the

integral simultaneous equations [4, eq. (10)].

The propagation constant /3 can be solved by setting the

determinant of [4, eq. (10)] equal to zero and seeking the

root of the resulting equation. However, each numerical

computation of the integrations [4, eq. (11)] intrinsically

needs a long computation time so that the total computa-

tion time becomes longer if the current components (4a),

(4b) are expanded in terms of a number of basis functions.

To avoid this, we can use the simple but accurate

closed-form expressions of the normalized current distri-

butions proposed in the previous paper [13] as follows:

lo
v

1– 1–: ,
Xm

lX1(X) =

~~n

2

X–xm
~ (5a)

l–~, xm<x G—
2——

2 ‘m

lX1(–X) = –lX1(X)

and

2XC M(x)–1

()
Izl(x)=l+lo l–—

w M(xc)–l
(5b)

M(x) =1/(1 –(2x/w)2 . (6)

The values 2XW/W and 2XC/W depend strongly on the

shape ratio w/h and can be found in the previous paper

[13, figs. 5 and 10]. These closed-form expressions satisfy

the edge singularities [8].

Using these as the basis functions, we can express the

current components i’(a) and iz(a) in (4) as

~(a)=Cli’xl(a) (7a)

~(a)=dl~l(a) (7b)

where

[

Cosaxm 7r
~’.(a) = 2j –

{ ( (~-xm))
+ Z (Cos ax.) HI a

a

((:-XJ)+(sinaxm).ll a

V(v–l)xm
—

(ax )“+1 {(cosaxm)m

.(s(o, v-l) -s(axm, v-l))

- (Sinmm)(c(o, v -1)

–C(axm, v–l))} 1
2XC

()
10 l–—

~l(a)=~sin~+
w

a M(xc)–l

(8a)

(8b)

and Hi(z) is a Struve function [9, p. 496, eq. (12.1.6)],

~(z) is a ith order Bessel function [9, p. 360, eq. (9.1.20)],

and C(x, a) and S(x, a) are incomplete gamma functions

[9, p. 262, eqs. (6.5.7) and (6.5.8)].

Then, we can obtain the integral simultaneous equations

to solve for ~ according to [4] as follows:

Kllcl + K12d1 = o (9a)

K21cI + K22d1 = O (9b)

where

Kll = 2~~~l(a)G&(a) da (lOa)
o

K12 = 2~m~l(a)G12~l(a) da (lOb)
o

K21 = 2~@~l(a)G&(a) da (1OC)
o

(lOd)

and the Gi j are given in [4], following the corrections

mentioned above. Now, we can obtain ~ as the root of the

following determinant:

Det = K11K22– K12K21 = O. (11)

The propagation constant ~(~) at an operating

frequency f can be expressed as follows:

P(f) = koi~ (12)

where ko( = O/uo, 00= velocity of light in free space)

denotes the propagation constant in free space and ~~f ( f )

the effective relative perrnittivity at the frequency f. There-

fore, calculation of ~ is identical to calculating c&(f).

The numerical calculations of the integrations in (10) are

actually performed from zero to an upper limit au with
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TABLE I
COMPARISON BETWEEN mm METHOD OF INVERSE INTERPOLATION

AND THE pRESENT METHOD

METHOD

10-3 28 5.46762 7.36375 7.75010
A

10-5 56 5.46732 7.3596o 7.74748

B 10-3 7 5.46730 7.35928 7.74745
[

E* =8, w/h = 1

A : METHOD OF INVERSE INTERPOLATION

B : PRESENT METHOD

ACCU: ACCURACY OF NUMERICAL INTEGRATIONS (10 )

TN: TOTAL NUMBER OF NUMERICAL INTEGRATIONS

TABLE II
COMPARISON BETWEEN THE ITRRATION METHOD AND THE PRESENT

METHOD

B: PRESENT METHOD USING BOTH IZ ( X ) AND lX( X )

C : PRESENT METHOD USING ONLY I ~ ( X )

ITERATION METHOD: FUJIKI et al. [2, table 11

respect to an integral variable a due to limits on computa-

tion time. We take au= 3x103/w in the present paper.

On the other hand, we can understand easily that it

takes ,more computation time to obtain t&(~) by the

method of inverse interpolation using two initial trial

values of c&(j), because each numerical calculation time

of Kll, K12, K21, and K22 of (10) is intr@sically long

and because these calculations must be performed for each

successive trial value c~f.

Now Kll, K21, and K22 he only weakly dependent on

the trial value t~f, but K12 depends strongly and almost

linearly on it. These characteristics lead to an effective

method of calculation (see the Appendix for details). Using

this method, we can seek ~~f (~) accurately and automati-

cally by using only the initial trial value c~f ( @ ). The

other advantage of this method is that c~f ( @ ) can be

obtained using the approximate formulas for t~f (~) pro-

posed already [6], [11], [12],2 although two initial trial
values that satisfy Det <0 and Det >0, respectively, must

be given in the method of inverse interpolation. ” In this

paper, C:f (~) is obtained using formula YK given in [U.

III. EFFECTIVE RBLATIVE PERMITTIVfTY c~f (~)

Table. I shows the comparison between the results ob-

tained by the method of inverse interpolation (method A)

and the present one (method B). For method A, the results

are shown for two cases where the numerical calculations

‘Main misprints in [12]: m(c*, c~, w/2– Y)+ {m(C~, C~, n/2– Y)}2

#-
in (6); 47Th+ 4h in (9); c~c~ /2 ( = about 5.221) + (m+ 1)/2

( = about 5.721) below fig. 2.

~
o

Vji, .
,.

Fig. 2. Comparison of c~f (~). C* = 9.7, h =1.27 mm. — present
method using both 1=(x) and IX(X). —-— present method using only
I=(x). —--— present method using only Iz(xj where J=(x)= M(x).
----- Kowalski and Pregla [3].

,~
o 5

f (GHz)
10

Fig. 3. Comparison of c&( j) computed by various authors. C* =11.7,
w/h = O.%, h = 3.17 mm. — various results illustrated in Kuester
and C@g [5, fig. 2]. ----- present method. —-— c~f (0) by Green’s
function technique [10].

of the integrations shown in (10) are accurate to better

than 10-3 and 10-5, respectively. The total number (TN)

of numefical integrations is also shown in Table I. The

computation time is ~most proportional to TN. The

present method (B) reduces the computation time by a

factor of about five compargd with method A. An agree-
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TABLE III

EFFECTIVE RELATIVS PERMITTIVITY C& (f)

3

0.005 0.05 0.1 0.2 0.3 0.4 0.7 1.0

1.604 1.629 1.667 1.740 1.8oo 1.846 1.922 1.960

1.648 1.682 1.728 1,806 1.859 1.893 1.945 1.966

1.700 1.743 1.795 1.867 1.907 1.930 1.963 1.976

2.793 2.926 3.106 3.413 3.614 3.737 3.905 3.944

2.923 3.105 3.317 3.595 3.737

3.081

3.814 3.916 3.953

3.311 3.523 3.734 3.825 3.875 3.940 3.965

4.937 5.270 5.765 6.799 7.367 7.633 7.876 7.939

5.163 5.65o 6.241 7.067 7.472 7.671 7.881 7.940

5.468 6.124 6.742 7.361 7.620 7.747 7.898 7.945

5.844 6.633 7.158 7.574 7.739 7.823 7.924 7.956

7.020 7.597 7.768 7.884 7.926 7.948 7.974 7.984

9.917 11.48 13.11 14.79 15,42 15.65 15.88 15.94

10.58 12.59 14.01 15.13 15.52 15.70 15.89 15.94

11.41 13.63 14.68 15.40 15.66 15.78 15.91 15.95

78.38 111.3 122.4 126.5 127.3 127.6 127.9 127.9

85.03 116.4 123.6 126.6 127.3 127.6 127.9 127.9

93.56 120.3 124.9 127.0 127.5 127.7 127.9 127.9

1X1 O-7 1.10 -6 1.10-5 1X1O -4 0.001 0.002 0.003 0.004

5.44o6 5.44o6 5.44o6 5.4406 5.4424 5.4464 5.4521 5,4592

f = (vO/h)/(h/lo). C*,ff(0) [ = 1 + E*(1 -q)] was calculated by using effective filling

fraction q[lO, table I] .
I

ment of four to five significant digits is seen between the

results of the two methods.

Table II compares the results obtained here with those

obtained through the iteration method proposed by Fujiki

et al. [2]. The result of [2] is the value for the case when the

total number of basis functions in (4) was taken as M + N

= 20. An agreement of four si~ficant digits is seen

between the results of the two methods. Table II also

includes results obtained by using only the longitudinal

current distribution l=(x). For this case, we can seek

~&( ~) as the value satisfying K12 = O. We find that this

result also has four significant digits, confirming that I=(x)

of (5b) is expressed in accurate closed form for the longitu-

dinal current distribution.

Fig. 2 shows a comparison of the effective relative

perrnittivities t~f ( ~ ) computed by the present method and

the method outlined by Kowalski and Pregla [3]. We could

confirm that the results by the present method using both

lX(X) and l=(x) or only l,(x) accurately approach the

exact values of c&(0) calculated by the Green’s function

technique [10]: t&(0) = 7.28922 for w/h= 3, 6.51149 for

w/h =1, and 5.87415 for w/h = 0.1. In addition, the

curves of c~f (~ ) for both cases are in good agreement and

cannot be distinguished from each other for w /lz = 0.1.

On the other hand, the curves of Kowalski and Pregla [3]

are in agreement with those of the present method for the

smaller shape ratio but are in disagreement for w/h = 3.

Additionally, the.result of [3] for_w/h = 3 differs at ~ = O

from the exact value of c~f (0), and this difference con-

tinues at higher frequencies.

To explain this discrepancy, one extra curve for w/h= 3

is given in Fig. 2 for C&(~) computed by the present

method using only I=(x) = M(x), where M(x) is the

Maxwell distribution shown in (6). This M(x) is different

from the l=(x) shown in (5b) for w/h larger than 0.7, as

illustrated in [13, fig. 4].

From a comparison of the various curves in Fig. 2, we

can conclude that l=(x) determines the major magnitude

,of c~f ( ~ ) and that lX(X) acts as the adjuster of its

magnitude. On the other hand, Kuester and Chang [5]

already suggested that inaccurate expressions for I=(x) and

lX(X) cause important discrepancies between the various

results. This can be confirmed in Fig. 2 and also from the

comparison in Fig. 3, in which the curve of C&(~) ob-

tained by the present method is shown together with the

various curves given in [5].

Table III presents the results of C&(~) computed by the

present method and also shows good convergence to the

exact value c~f (0) = 5.44034 in the case of f * = 8 and

w/h =1.

IV. CONCLUSIONS

It has been shown that the method described here can

compute c&( f) effectively and automatically with great

savings in computation time. The numerical results shown

in the tables and figures are believed to be obtained with a

high degree of accuracy and thus can be used as reference

standards. It has been confirmed that l=(x) determines the

major magnitude of C&(~) and that lx(x) acts as the

adjuster of its magnitude.
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Fig. 4. Diagram of the method for effectively calculating c&.

APPENDIX

We first obtain ~ke trial value cjf (@) and calculate

Kll, K12, K21, and K22 for this value. As explained in

Section II, the values of Kll, K21, and K22 are constant,

even if we change the trial value c&. Therefore, we can

estimate K12 satisfying Det = O shown in (11) by using

Kll (~), K21( @)), and K22(@) obtained above and

denoting its value as K12(app). This K12(app) is the value

of K12 corresponding to the c&(~) to, be sought. Fig. 4

illustrates the procedure, starting from the initial point @

and Seeking the final point @). having the value of

K12(app) on the curve of K12 (solid tie). The second trial

value c~f ( @ ) is given tvith the value shifted by 0.1

percent from t~f (@) in-this paper. The C&(@) for the

point @ in Fig. 4 is the final value.
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