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- Dispersion Characteristics of Open
Microstrip Lines

MASANORI KOBAYASHI, MEMBER, IEEE, AND FUMIHIRO ANDO

Abstract —A method based on spectral-domain analysis is derived to
compute effectively and automatically the effective relative permittivity of
an open microstrip line. Simple but accurate closed-form expressions are
used as the basis functions of the longitudinal and transverse current
distributions. The numerical results are shown in tables and figures for
various cases and compared with other available results. The results
presented here are seen as having a high degree of accuracy and may be
used as reference standards.

I. INTRODUCTION

CCURATE CALCULATION of the dispersion

characteristics of open microstrip lines can be car-
ried out by hybrid-mode analysis. This dispersion analysis
has been studied by a number of researchers and by
various methods (see [1]-[7] and references therein). These
methods are intrinsically rigorous, but need long computa-
tion times since the longitudinal and transverse current
distributions must be expressed using a large number of
basis functions to calculate the dispersion characteristics
numerically with a high degree of accuracy. The results in
many papers were calculated with a small number of basis
functions to save computation time, and the current distri-
butions were not expressed accurately. This is the major
cause for the significant discrepancies between many com-
puted results, as shown by Kuester and Chang [5, fig. 2]
and by Fig. 3 in the present paper.

An attempt is required at present to confirm which
numerical results are more “exact” and particularly to
show results with a high degree of accuracy for use as a
“standard.”

In the spectral-domain analysis with powerful features
proposed by Itoh and Mittra [4], the choice of the basis
functions is important for numerical efficiency. One of the
present authors proposed simple but accurate closed-form
expressions for the normalized longitudinal and transverse
current distributions on microstrip [13].}

In this paper, using these expressions the frequency-
dependent -characteristics for the effective relative permit-
tivities of microstrip lines are calculated accurately by
spectral-domain analysis [4]. In the numerical calculation,
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1Main corrections in [13]: longitudinal — transverse in figs. 8-10;

i (%) 0(f)/ (1) w)(m) = ji, (x,,)0(f)/(i;(0)wh) in fig. 11.
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Fig. 1. Microstrip configuration.

a’‘method is derived to determine effectively and automati-
cally the effective relative permittivity e%;(f) using only
one trial value, and the computation time is greatly re-
duced. The numerical results are shown in tables and
figures for the cases of various shape ratios and various
relative permittivities of the substrate.

II. CALCULATING METHOD

Fig. 1 shows the open microstrip line structure, assumed
to be uniform and infinite in both x- and z-directions. The
infinitely thin strip and the ground plane are perfect
conductors. It is also assumed that the substrate material is
lossless and its relative permittivity and permeability are
¢* and p*(=1), respectively. It is advantageous to carry
out the investigation with functions that are Fourier trans-
formed with respect to the x-axis. For convenience, the
Fourier transform of a variable with respect to x is de-
noted by a tilde ( ~ ) above it, such as

flay=[" j(x)errds. M

This definition is the same as that given by Itoh and
Mittra [4]. Propagation in the z-direction according to
exp(— jBz) and time dependence of exp(jw?) are as-
sumed, where B is the unknown propagation constant and
w is the operating angular frequency. -

The unknown current components on the strip are de-
noted by I,(«) and I (), respectively. According to Itoh
and Mittra [4], we can solve the boundary value problem
in the spectral domain for the following boundary condi-
tions at the interface between the substrate (region 1) and
the air (region 2):

(2a)
(2b)
(3a2)
(3b)

Exl(a’ h) = ~x2(a’ h)
~zl(a’ h) = Ez2(a’ h)
H,(a,h)= H,y(a,h) =~ L(a)
ﬁxl(a’ h)— ~x2(a7 h) = iz(a)
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However misprints exist in the equations given in [4], and
the following corrections should be made: J(a) in (4a)
and (4b) — — J (), and det in the equations for G;; and
G,y = —det.

After these corrections, expanding the unknown current
components I;(a) and I:(a) in terms of the known basis
functions fxn(a) and I, (a) as

M

I(e)= ¥ c,lo(a)

n=1

(42)

(@)= £ 4L (@)

and using the method given in [4], we can obtain the
integral simultaneous equations [4, eq. (10)].

The propagation constant 8 can be solved by setting the
determinant of [4, eq. (10)] equal to zero and seeking the
root of the resulting equation. However, each numerical
computation of the integrations [4, eq. (11)] intrinsically
needs a long computation time so that the total computa-
tion time becomes longer if the current components (4a),
(4b) are expanded in terms of a number of basis functions.

To avoid this, we can use the simple but accurate
closed-form expressions of the normalized current distri-
butions proposed in the previous paper [13] as follows:

x 14
-2,
xm

Ly(x)=

1.6,

and

M(x)—-1
M(x,)-1

M(x)=1/y1-(2x/w)*.

(5b)

2x,
Izl(x)=1+10(1— )
w

(6)

The values 2x,,/w and 2x,/w depend strongly on the
shape ratio w /h and can be found in the previous paper
[13, figs. 5 and 10]. These closed-form expressions satisfy
the edge singularities [8].

Using these as the basis functions, we can express the
current components I;(a) and I;(a) in (4) as

fx(“) =01fx1("‘)
]:(“) =d1le(°‘)

(7a)
(70)
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where

ixl(a) = 2][_

COS aX,,

n %{(cosaxm)Hl(“(_‘;— B x”’))

+(sinaxm)J1(a(5 - xm))}
_ v(r-1)x,
(axm)l""l
(80,7 —1)-S(ax,,,»—1))
—(sinax,,)(C(0,»—1)

—C(axm,u-—l))}}
10(1— 2:)

wa |a|w 2 aw
{ 2 °( 2 )_as‘“ 2}
and H,(z) is a Struve function [9, p. 496, eq. (12.1.6)],
J.(2) is a ith order Bessel function [9, p. 360, eq. (9.1.20)],
and C(x, a) and S(x, a) are incomplete gamma functions
[9, p. 262, eqgs. (6.5.7) and (6.5.8)].

Then, we can obtain the integral simultaneous equations
to solve for B8 according to [4] as follows:

Klle, + K12d, =0

{(cosax,,)

(8a)

(8b)

(92)

K21e, + K22d,=0 (9b)
where

Ki1=2["Ty(a)Gula(e)da  (10)

0
0 ~ ~

K12=2 f I,(a)G i (a)da (10b)
0

K21= 2/001‘;1(“)(;211;1(“) da (10c)
0

Kk2-2 *F(2)Gpl () da (10d)
0

and the G;; are given in [4], following the corrections
mentioned above. Now, we can obtain 8 as the root of the
following determinant:

Det = K11K22—- K12K21=0. (11)

The propagation constant B(f) at an operating
frequency f can be expressed as follows:

B(f) =koyed;(f) (12)

where kq(=w/v,, v,= velocity of light in free space)
denotes the propagation constant in free space and e*;(f)
the effective relative permittivity at the frequency f. There-
fore, calculation of B is identical to calculating e*;(f).
The numerical calculations of the integrations in (10) are
actually performed from zero to an upper limit a, with



KOBAYASHI AND ANDO: DISPERSION CHARACTERISTICS OF OPEN MICROSTRIP LINES 103

TABLE 1
COMPARISON BETWEEN THE METHOD OF INVERSE INTERPOLATION
AND THE PRESENT METHOD

h/)‘0 T
0.005 0.20 0.40
METHOD ACCU] TN
R 103 | 28 | 5.46762 | 7.36375 | 7.75010
107% | 56 | 5.46732 | 7.35960 | 7.74748
B | 1073 7|5.46730]7.35928 ] 7.74745

e*=8, w/h=1
A: METHOD OF INVERSE INTERPOLATION
B: PRESENT METHOD
ACCU: ACCURACY OF NUMERICAL INTEGRATIONS(10)
TN: TOTAL NUMBER OF NUMERICAL INTEGRATIONS

TABLE II
COMPARISON BETWEEN THE ITERATION METHOD AND THE PRESENT
METHOD
ITERATION METHOD PRESENT METHOD
B c
e¥ . (1) 6.51912 6.51941 | 6.51914
e*=9.7, h=1.27 mm, w=1.219 mm, =1 GHz

B: PRESENT METHOD USING BOTH Iz(X) AND Ix(x)
C: PRESENT METHOD USING ONLY Iz(x)
ITERATION METHOD: FUJIKI et al.[2, table 1]

respect to an integral variable a due to limits on computa-
tion time. We take a,, = 3X10%/w in the present paper.

On the other hand, we can understand easily that it
takes more computation time to obtain €X,(f) by the
method of inverse interpolation using two initial trial
values of eX;(f), because each numerical calculation time
of K11, K12, K21, and K22 of (10) is intrinsically long
and because these calculations must be performed for each
successive trial value e2;. :

Now K11, K21, and K22 are only weakly dependent on
the trial value e, but K12 depends strongly and almost
linearly on it. These characteristics lead to an effective
method of calculation (see the Appendix for details). Using
this method, we can seek €X;( f) accurately and automati-
cally by using only the initial trial value €%((@). The
other advantage of this method is that e ((D) can be
obtained using the approximate formulas for €¢%;(f) pro-
posed already [6], [11], [12],%> although two initial trial
values that satisfy Det < 0 and Det > 0, respectively, must
be given in the method of inverse interpolation. In this
paper, ¢%.(@) is obtained using formula YK given in [12].

III. EFFECTIVE RELATIVE PERMITTIVITY €%.(f)

Table I shows the comparison between the results ob-
tained by the method of inverse interpolation (method A)
and the present one (method B). For method A, the results
are shown for two cases where the numerical calculations

>Main misprints in [12]: m(ef, e¥,n/2—v) = {m(ef, &}, 7/2—y)}
in (6); 4mh — 4h in (9); et /2 (= about 5.221) — (Jefet +1)/2
( = about 5.721) below fig. 2.

Errlf)

-3

€*=9.7
h=1.27mm

0 0.05 0.10 - 015

h/a

Fig. 2. Comparison of €% (f). ¢* =97, h=127 mm. —— present
method using both I,(x) and I (x). —-— present method using only
I,(x). —--— present method using only I,(x) where I,(x)=M(x).
----- Kowalski and Pregla [3]. '

el f)

f (GHz)

Fig. 3. Comparison of e¢%(f) computed by various authors. ¢* =11.7,
w/h =096, h=3.17 mm. — various results illustrated in Kuester
and Chang [5, fig. 2]. ----- present method. —-— €%;(0) by Green’s
function technique [10].

of the integrations shown in (10) are accurate to better
than 103 and 105, respectively. The total number (TN)
of numerical integrations is also shown in Table I. The
computation time is almost proportional to TN. The
present method (B) reduces the computation time by a
factor of about five compared with method A. An agree-
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TABLE III
EFFECTIVE RELATIVE PERMITTIVITY €% (f)
h/,
- VNG 0 0.005 0.05 0.1 0.2 0.3 0.4 0.7 1.0
0.4 | 1.60329 | 1.604 1.629 1.667 1.740 1.800 1.846 1.922 1.960
2] 1 1.64667 | 1.648 1.682 1.728 1.806 1.859 1.893 1.945 1.966
2 1.69807 | 1.700 1.743 1.795 1.867 1.907 1.930 1,963 1,976
0.4 | 2.78862 | 2.793 2.926 3.106 3.413 3.614 3.737 3.905 3.944
4f 1 2.91642 { 2.923 3.105 3.317 3.595 3.737 3.814 3.916 3.953
2 3.07119 | 3.081 3.311 3.523 3.734 3.825 3.875 3.940 3.965
0.1 4.92578 4.937 5.270 5.765 6.799 7.367 7.633 7.876 7.939
0.4 5.14550 5.163 5.650 6.241 7.067 T.472 7.671 7.881 7.940
8] 1 5.44034 | 5.468 6.124 6.742 7.361 7.620 T.T47 7.898 7.945
5.80203 | 5.8u4 6.633 7.158 7.574 7.739 7.823 7.924 7.956
10 6.88677 7.020 7.597 7.768 7.884 7.926 7.948 7.974 7.984
0.4 | 9.85123 | 9.917 11.48 13.11 14.79 15.42 15.65 15.88 15.94
16 10.4789 [10.58 12.59 14.01 15.13 15.52 15.70 15.89 15.94
11,2545 11.41 13.63 14.68 15.40 15.66 15.78 15.91 15.95
0.4 [75.6653 [78.38 111.3 122.4 126.5 127.3 127.6 127.9 127.9
128 80.9729 |[85.03 116.4 123.6 126.6 127.3 127.6 127.9 127.9
2 |87.5449 ]93.56 120.3 124.9 127.0 127.5 127.7 127.9 127.9
h
oo \/h 0 121077 | 1x207® | 1x1075 | 1x107% | 0.001 0.002 0.003 0.004
8] 1 5.44034 | 5,4406 5. 4406 5. 4406 5.,4406 5. hh2y 54464 5.4521 5.4592
= (vo/h)/(h/)\o). sgff(o) [=1+e*(1-g)] was calculated by using effective filling
fraction gq[10, table IJ.

ment of four to five significant digits is seen between the
tesults of the two methods.

Table 1I compares the results obtained here with those
obtained through the iteration method proposed by Fujiki
et al. [2]. The result of [2] is the value for the case when the
total number of basis functions in (4) was taken as M + N
=20. An agreement of four significant digits is seen
between the results of the two methods. Table II also
includes results obtained by using only the longitudinal
current distribution I (x). For this case, we can seck
eX:(f) as the value satisfying K12 =0. We find that this
result also has four significant digits, confirming that I (x)
of (5b) is expressed in accurate closed form for the longitu-
dinal current distribution.

Fig. 2 shows a comparison of the effective relative
permittivities €%;( f) computed by the present method and
the method outlined by Kowalski and Pregla [3]. We could
confirm that the results by the present method using both
I.(x) and I,(x) or only I,(x) accurately approach the
exact values of €%;(0) calculated by the Green’s function
technique [10]: €%.(0) = 7.28922 for w /h = 3, 6.51149 for
w/h=1, and 5.87415 for w/h=0.1. In addition, the
curves of e%.(f) for both cases are in good agreement and
cannot be distinguished from each other for w/h=0.1.
On the other hand, the curves of Kowalski and Pregla [3]
are in agreement with those of the present method for the
smaller shape ratio but are in disagreement for w /h = 3.
Additionally, the result of [3] for w /h =3 differs at f =0
from the exact value of €%:(0), and this difference con-
tinues at higher frequencies.

To explain this discrepancy, one extra curve for w /h =3
is given in Fig. 2 for eX%(f) computed by the present
method using only I,(x)= M(x), where M(x) is the
Maxwell distribution shown in (6). This M(x) is different
from the I,(x) shown in (5b) for w /A larger than 0.7, as
illustrated in [13, fig. 4].

From a comparison of the various curves in Fig. 2, we
can conclude that I,(x) determines the major magnitude
of €X:(f) and that I (x) acts as the adjuster of its
magnitude. On the other hand, Kuester and Chang [5]
already suggested that inaccurate expressions for I,(x) and
I.(x) cause important discrepancies beiween the various
results. This can be confirmed in Fig. 2 and also from the
comparison in Fig. 3, in which the curve of eX;(f) ob-
tained by the present method is shown together with the
various curves given in [5].

Table III presents the results of e*,( f) computed by the
present method and also shows good convergence to the
exact value eX:(0)=5.44034 in the case of ¢*=8 and
w/h=1

IV. CONCLUSIONS

It has been shown that the method described here can
compute €%;(f) effectively and automatically with great
savings in computation time. The numerical results shown
in the tables and figures are believed to be obtained with a
high degree of accuracy and thus can be used as reference
standards. It has been confirmed that 7,(x) determines the
major magnitude of eX;(f) and that I,(x) acts as the
adjuster of its magnitude.
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Fig. 4. Diagram of the method for effectively calculating €.

APPENDIX

We first obtain the trial value €, ((D) and calculate
K11, K12, K21, and K22 for this value. As explaincd in
Section II, the values of K11, K21, and K22 are constant,
even if we change the trial value ¢Z. Therefore, we can
estimate K12 satisfying Det =0 shown in (11) by using
K11(@D), K21(@D), and K22((Q)) obtained above and
denoting its value as K12(app). This K12(app) is the value
of K12 corresponding to the €%;(f) to be sought. Fig. 4
illustrates the procedure, starting from the initial point (1)

and seeking the final point (5). having the value of

K12(app) on the curve of K12 (solid line). The second trial
value €*.(() is given with the value shifted by 0.1
percent from €% () in this paper. The €% (() for the
point (5) in Fig. 4 is the final value.
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